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Abstract: A major issue in ecological monitoring programs is the implementation of power analysis to

evaluate the reliability of statistical analyses and to plan appropriate levels of survey effort. In particular,
although the occurrence of false negative survey results (species present but not recorded) is more or less
ubiquitous, it is seldom explicitly addressed in analyses. Using the example of a conservation manager
monitoring bird species across a fragmented landscape, we run stochastic simulations that explore how
statistical power to detect declines in these species varies as a function of 1) the allocation of survey effort
(sites sampled relative to repeat visits to sites); 2) the initial prevalence of a species in the landscape; 3) the
false negative error rate of observers conducting the surveys; and 4) the size of the decline. We construct
artificial datasests in which declines occur and calculate power as the number of times a “virtual ecologist”
successfully detects these declines. In sampling, the virtual ecologist is subject to observational constraints
typically encountered in the field and uses a maximum likelihood method that estimates overall occupancy
probability (p) across the landscape while accounting for observer error. We identify the key variables
influencing power and consider how a manager may respond in attempting to developing an optimal

monitoring design.
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1. INTRODUCTION

An effective survey and monitoring program
should be a fundamental component of any
wildlife conservation management strategy.
However, any broadly applicable monitoring
technique must overcome two key challenges: the
high degree of variability inherent in large-scale
systems; and the ubiquity ‘of -observer error in
recording the presence and/or abundance of the
species of interest.

The general solution to the first challenge is to
increase sampling effort so that the statistical
power of any significance tests applied to the data
reaches an acceptable threshold. But how is
statistical power affected by the inevitable
occurrence of false negative survey results? These
are errors that occur when a species is in fact
present at a site but goes unrecorded. No matter
how experienced or skilful the observer, there is
always a finite chance of a species eluding

detection. The issue of false negatives is therefore
of critical importance in assessing the reliability of
survey and monitoring programs, but is rarely
dealt with in practice.

In this paper, we address the problem by
conducting simulations that mimic the plight of 2
conservation manager faced with the task of
monitoring declining birds across a fragmented
landscape. Given a fixed annual budget, she must
design a survey regime that maximizes her ability
to detect any declines that have occurred, i.e. she is
aiming to maximize statistical power. In our
analysis we focus on four main factors that can
influence power: 1) the allocation of survey effort,
in terms of the number of sites sampled (n) relative
to the number of repeat visits made to each site
(m), subject to the constraint nm < 500; 2) the
initial prevalence of a species in the landscape,
measured by p, the proportion of patches occupied;
3) the error rate of observers conducting the
surveys, specifically the false negative error rate,
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which is determined by the species-specific
observability, ¢; and 4) how large a decline (d)
must be before it is considered serious from a
management point of view, i.e. the effect s s1ze we
wish to be able to detect.

2. TWO COMMON PROBLEMS IN
BIOLOGICAL MONITORING

We now formulate two key problems likely to be
encountered by practitioners of biological surveys:
1) how to maximize statistical power when
monitoring one or more species with unknown
initial distribution(s); and 2) when a rare species is
known to be limited to a certain number of sites,
how to ensure that enough visits are made to those
sites so that a substantial decline would be
detected.

2.1 Problem 1: Monitoring an Assemblage

In the first case, we assume that the manager has a
budget sufficient to conduct 500 surveys in a
season. Each species can be surveyed
simultaneously on a given survey visit, but with
differing probabilities of detection (g). Her
assessment of decline for each species is based on
two rounds of surveying, an arbitrary length of
time (e.g. ten years) apart, for each of which she
estimates the overall occupancy ( p, proportion of
patches occupied) across the landscape. Because
the method for estimating p involves estimating

two parameters ( p and g, see Section 3.1), the

manager is constrained to conduct at least three
repeat visits at each site.

The main variable under the manager’s control is
the allocation of survey effort between number of
sites surveyed and number of repeat visits to those
sites, i.e. the ratio #:m. The magnitude of a decline
undergone by a given species obviously cannot be
controlled, but power for a species can still be
influenced indirectly by altering the threshold at
which a decline is considered significant enough to
trigger management actions. Species occupancy
levels (p) and observability (q) are also out of the
manager’s control; all she can do is abstain from
concluding anything about species that suffer from
low power because p and/or g are low.

2.2 Problem 2: Monitoring a Threatened
Species

In the second case, we assume that the manager is
responsible for monitoring a threatened species
that is known to be confined to only 15 sites.
Given a species-typical observability (g) and a

fixed threshold of a 50% decline for triggering
management actions, she must calculate the
number of repeat visits required to the 15 sites to
ensure an adequate level of statistical power (e.g.
the conventional level of (.8) to detect declines is
achieved. Here n, d and ¢ are fixed and p is
assumed to be 1, leaving her with only one
variable, m, to vary.

3. PARAMETER ESTIMATION AND
SIMULATIONS

The tools necessary to solve both of these
problems are: 1) a method for estimating p when

there is a chance of false negative survey results
occurring; and 2) a simulation technique that
mimics the process of data collection in biological
surveys and thus allows statistical power to be
calculated. These are described below.

3.1 Estimating p in the Presence of
Observer Error

The method for estimating p in the presence of

observer error is described in detail and its
performance tested by Tyre et al. [in preparation]
and is summarized briefly here. We assume that
the result for any given survey (species present/not
present) is the outcome of two binomial processes
acting simultaneously: 1) the probability that the
species is indeed present in the site (p); and 2) the
probability that the species is observed in any
given survey, given that it is present (g). Thus the
survey results follow a ‘finite mixture distribution’
with a mixing probability (the probability a site is
occupied), and two binomial components, one with
a probability of success equal to zero. We use
maximum likelihood methods to estimate the
parameters [Hilborn and Mangel, 1997].

We assume that # sites have been visited m times
each and that a species has a .probability of
occupying a site, p, that is constant for all sites
throughout the landscape. A species also has a
species-typical probability g of being observed
during any one visit. After the m visits are
complete, the number of observations of a species
at a given site is o (0 < m). If the species was
observed at least once, then the likelihood of this
observation is

Lo>0)=p(7)g°(1-q)" o
which is the binomial probability of o successes in
m trials multiplied by the probability that the site
was occupied. If the species was not observed at a
site, the likelihood is:
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Lio=0)=(-p)+pll-q) @)

which is the probability that it was not there plus
the probability that it was there but was not
observed in m visits. Note that the second term in
L(0=0) is the probability of not seeing the species
in m visits multiplied by the probability that it was
there. The negative logarithms of these are
summed over all sites, and this value minimised to
find the maximum likelihood estimate for the two
parameters, p and . We implemented the code in

C++ builder and used the Nelder-Mead simplex

algorithm to find the best fit parameters.

3.2 Power Simulations: the “Virtual

Ecologist”

We calculated statistical power (for problem 1)
and number of required surveys (for problem 2) by
employing a “virtual ecologist” ” [Berger et al,
1999; Grimm et al., 1999; Tyre et al., in press] to
sample artificial datasets in which we caused
species’ occupancy levels to decline by specified
amounts.

When calculating power for problem 1, we varied
the parameters n:m, p, q and d over ranges likely to
be interesting to a manager (Table 1) and
generated random datasets for each combination.
The process was as follows. First, actual pre-
decline patch occupancies for each of the n patches
were generated as Bernouilli random variables
with Pr(success) = p;. The virtual ecologist
recorded a given species as present on a single
visit with probability pig. After m visits to n sites,
the resulting dataset consisted of a vector of n
binomially  distributed  random  variables,
O ~(m,p), representing the number of times the
species was observed. Post-decline patch
occupancies were then generated, again as
Bemouilli random variables, but with Pr(success)
= p-pd. We then estimated parameters for two
models, one where Pr(success) = p, in (1) and (2)
is assumed to be constant across the two survey
periods, and a second model where a separate b
is fit for each period. We compared these models
using a Likelihood Ratio test, and where the model
with two separate p, has a significantly lower

likelihood (at o = 0.05), we identify a negative
trend. '

For each of the 1362 parameter combinations
listed in Table 1, we carried out 1000 repetitions of
this process and recorded the number of repetitions

in which p, was significantly greater than p, .

Table 1. Parameter combinations used in power

simulations.

Parameter Values Total

nm 125:4, 100:5, ... 7

50:10

Pi 03,04, ...09. 7

d 0,0.25,0.5,0.75 4

q 03,04,...09 7
Total combinations - 1362

This was a measure of statistical power, i.e. the
probability of detecting a decline, given that a real
decline had actually occurred.

When calculating the minimum number of surveys
required for problem 2, we fixed n, (the number of
sites that the threatened species is known to
occupy from previous records) at 15, p; at 1
(assuming all sites are still currently occupied), g
at 0.4 (representing a moderately observable
species) and d at 0.5 (the management threshold
for triggering recovery actions). We then ran
simulations in which we varied m, the number of
repeat visits, over the values three to ten inclusive
and calculated the resultant statistical power.

4, RESULTS
4.1 Problem 1: Monitoring an assemblage

From the simulations designed to address the first
problem, visual inspection indicated that statistical
power increased monotonically with increasing
levels of each of the parameters varied (Figure 1).
Thus there appeared to be no optimal combination
of parameters for which statistical power reached a
distinct peak. A higher ratio of sites to visits (n:m),
higher initial occupancies (py), and larger declines
(d) all resulted in a greater chance that the manager
was able to detect a decline (Figure 1). Power also
increases with the observability g, but this effect is
generally much smaller than all others, except
when declines are small, and relatively few visits
are made to each site. It is worth noting that the
power of the highest sites:visits ratio is always
higher than the lowest ratio, even at the lowest
observability tested. When there is no decline, the
method is making Type I errors (ie. detecting a
trend when none is present) approximately 5% of
the time.

4.2 Problem 2: Monitoring a threatened
species

The simulations designed to address the second
problem showed that statistical power rose sharply
as a function of survey effort, and the
conventionally acceptable level of 0.8 was attained
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Figure 1. Power as a function of the % patches initially occupied (p;) for each % decline (d) tested. For
clarity, only the two most extreme sites to visits ratios (n:m) are shown: 125:4 (dot-dash lines), and 50:10
(solid lines). Each value of observability ¢ is shown with a separate line; labels are omitted for clarity, but

power generally increases with g.

after five repeat visits (Figure 2). From this point
on, the gain in power from additional repeat visits
reached a plateau. For a smaller decline of 25%
even ten repeat visits only achieves a power of 0.7.

S. CONCLUSIONS

The main recommendation to arise from our
analysis is that when total survey effort is fixed at
500 visits, the best way for a manager to increase
statistical power is to allocate resources
preferentially to obtaining more survey sites rather
than revisiting the same sites many times. Power
was consistently higher when the ratio of

sites:visits was set at 125:4, for all combinations of
the other parameters.

Predictably, the size of the decline and the
proportion of sites in the landscape that were
initially occupied also had strong effects on power.
This means that small declines in species that are
already rare will be very difficult for a manager to
detect, even when many sites are visited. For such
species, a manager may be forced to set a more
generous  decline threshold for triggering
management actions. However, this strategy may
result in actions being triggered only when the
species has already declined to such low levels that
recovery is difficult or impossible. The other
option is to practice ‘ecological triage’ and
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Figure 2. Statistical power as a function of the
number of repeat visits to 15 sites that were
initially occupied but suffered a 25% or 50%
decline between surveys.

abandon surveying efforts for very rare species
altogether, acknowledging that they are simply too
difficult to monitor rigorously. On the other hand,
one could argue that irretrievably low statistical
power is evidence that a species is in need of
immediate recovery action.

Our result that power was largely independent of
species observability, g is an encouraging
affirmation that Tyre et al.’s occupancy estimation
method is functioning correctly. It shows that
provided a species is well-represented in the
landscape, a manager using this method should
usually be able to detect substantial declines.
However, some caution in accepting this
interpretation may be warranted due to the fact that
there are other realistic regions of parameter space
yet to be explored. In particular, when g is very
low, or when the overall survey budget is much
more limited, the method may not be able to shield
the user from the debilitating effect of low
observability on statistical power. For example, the
lowest number of repeat visits in our simulations
was four. Even at the lowest observability we
tested (0.3), there is still only a probability of
(0.7)* = 0.24 of obtaining a false negative result at
a given site. Reducing the number of visits to three
would increase this probability to 0.34 and may
lead to a substantial reduction in power.

51 Limitations and Future Applications
We can identify several other limitations of this

study that suggest the need for further work.
Firstly, we have not explicitly incorporated

economic considerations into our analysis, the
primary one being that acquiring new survey sites
is likely to be substantially more expensive than
performing repeat Visits to existing ones. To allow
for this, our constraint could change from nm < B
to nm + cn < B, where B is the total survey budget
and ¢ is the extra cost involved in setting up a new
site. Inclusion of such a cost function might
markedly alter the effect on power of the
sites:visits ratio and may well produce an optimum
rather than a monotonically increasing effect.

Secondly, in testing for declines, we have adhered
to the traditional 5% risk of obtaining a false
positive result. However, a conservation manager
may be much more concerned about avoiding false
negatives, as this kind of error may lead to the
highly undesirable outcome of a species extinction.
Managers may therefore be willing to accept an
increased risk of false positives, if it means the
ability to achiever greater power. Simulations
trading off the risk of false positive and false
negative errors might therefore be a worthwhile
exercise.

Thirdly, we have only addressed the situation
where the manager is making decisions based on
two ‘snapshots’ of data. Although this is by no
means unheard of, it would also be interesting to
extend the method so it could be applied to time-
series datasets collected over many years. This also
raises the possibility of incorporating power
simulations into an active adaptive monitoring
framework, in which each years’ updated estimates
of occupancy are used to optimize the ensuing
year’s surveying, in terms of how much effort
needs to be expended and where in the landscape it
should be concentrated.

In summary, we have shown how estimates of
patch occupancy across a landscape, once adjusted
for observer errors, can be used as a management
tool for deciding how to best allocate survey and
monitoring efforts. Although we used declining
birds as our example, the methods described could
be equally well applied to a wide variety of
biological systems. Thus we believe this analytic
tool has great potential for use in solving common
problems faced by conservation managers.
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